Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Br J Cancer ; 130(5): 728-740, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38200234

RESUMEN

BACKGROUND: This study aimed to investigate clinicopathological and molecular tumour features associated with intratumoral pks+ Escherichia coli (pks+E.coli+), pks+E.coli- (non-E.coli bacteria harbouring the pks island), Enterotoxigenic Bacteroides fragilis (ETBF) and Fusobacterium nucleatum (F. nucleatum). METHODS: We screened 1697 tumour-derived DNA samples from the Australasian Colorectal Cancer Family Registry, Melbourne Collaborative Cohort Study and the ANGELS study using targeted PCR. RESULTS: Pks+E.coli+ was associated with male sex (P < 0.01) and APC:c.835-8 A > G somatic mutation (P = 0.03). The association between pks+E.coli+ and APC:c.835-8 A > G was specific to early-onset CRCs (diagnosed<45years, P = 0.02). The APC:c.835-A > G was not associated with pks+E.coli- (P = 0.36). F. nucleatum was associated with DNA mismatch repair deficiency (MMRd), BRAF:c.1799T>A p.V600E mutation, CpG island methylator phenotype, proximal tumour location, and high levels of tumour infiltrating lymphocytes (Ps < 0.01). In the stratified analysis by MMRd subgroups, F. nucleatum was associated with Lynch syndrome, MLH1 methylated and double MMR somatic mutated MMRd subgroups (Ps < 0.01). CONCLUSION: Intratumoral pks+E.coli+ but not pks+E.coli- are associated with CRCs harbouring the APC:c.835-8 A > G somatic mutation, suggesting that this mutation is specifically related to DNA damage from colibactin-producing E.coli exposures. F. nucleatum was associated with both hereditary and sporadic MMRd subtypes, suggesting the MMRd tumour microenvironment is important for F. nucleatum colonisation irrespective of its cause.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Colorrectales , Fusobacterium nucleatum , Síndromes Neoplásicos Hereditarios , Humanos , Masculino , Fusobacterium nucleatum/genética , Bacteroides fragilis/genética , Escherichia coli/genética , Estudios de Cohortes , Neoplasias Colorrectales/patología , Daño del ADN , ADN , Microambiente Tumoral
2.
Elife ; 122023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37697804

RESUMEN

Background: The Global Typhoid Genomics Consortium was established to bring together the typhoid research community to aggregate and analyse Salmonella enterica serovar Typhi (Typhi) genomic data to inform public health action. This analysis, which marks 22 years since the publication of the first Typhi genome, represents the largest Typhi genome sequence collection to date (n=13,000). Methods: This is a meta-analysis of global genotype and antimicrobial resistance (AMR) determinants extracted from previously sequenced genome data and analysed using consistent methods implemented in open analysis platforms GenoTyphi and Pathogenwatch. Results: Compared with previous global snapshots, the data highlight that genotype 4.3.1 (H58) has not spread beyond Asia and Eastern/Southern Africa; in other regions, distinct genotypes dominate and have independently evolved AMR. Data gaps remain in many parts of the world, and we show the potential of travel-associated sequences to provide informal 'sentinel' surveillance for such locations. The data indicate that ciprofloxacin non-susceptibility (>1 resistance determinant) is widespread across geographies and genotypes, with high-level ciprofloxacin resistance (≥3 determinants) reaching 20% prevalence in South Asia. Extensively drug-resistant (XDR) typhoid has become dominant in Pakistan (70% in 2020) but has not yet become established elsewhere. Ceftriaxone resistance has emerged in eight non-XDR genotypes, including a ciprofloxacin-resistant lineage (4.3.1.2.1) in India. Azithromycin resistance mutations were detected at low prevalence in South Asia, including in two common ciprofloxacin-resistant genotypes. Conclusions: The consortium's aim is to encourage continued data sharing and collaboration to monitor the emergence and global spread of AMR Typhi, and to inform decision-making around the introduction of typhoid conjugate vaccines (TCVs) and other prevention and control strategies. Funding: No specific funding was awarded for this meta-analysis. Coordinators were supported by fellowships from the European Union (ZAD received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 845681), the Wellcome Trust (SB, Wellcome Trust Senior Fellowship), and the National Health and Medical Research Council (DJI is supported by an NHMRC Investigator Grant [GNT1195210]).


Salmonella Typhi (Typhi) is a type of bacteria that causes typhoid fever. More than 110,000 people die from this disease each year, predominantly in areas of sub-Saharan Africa and South Asia with limited access to safe water and sanitation. Clinicians use antibiotics to treat typhoid fever, but scientists worry that the spread of antimicrobial-resistant Typhi could render the drugs ineffective, leading to increased typhoid fever mortality. The World Health Organization has prequalified two vaccines that are highly effective in preventing typhoid fever and may also help limit the emergence and spread of resistant Typhi. In low resource settings, public health officials must make difficult trade-off decisions about which new vaccines to introduce into already crowded immunization schedules. Understanding the local burden of antimicrobial-resistant Typhi and how it is spreading could help inform their actions. The Global Typhoid Genomics Consortium analyzed 13,000 Typhi genomes from 110 countries to provide a global overview of genetic diversity and antimicrobial-resistant patterns. The analysis showed great genetic diversity of the different strains between countries and regions. For example, the H58 Typhi variant, which is often drug-resistant, has spread rapidly through Asia and Eastern and Southern Africa, but is less common in other regions. However, distinct strains of other drug-resistant Typhi have emerged in other parts of the world. Resistance to the antibiotic ciprofloxacin was widespread and accounted for over 85% of cases in South Africa. Around 70% of Typhi from Pakistan were extensively drug-resistant in 2020, but these hard-to-treat variants have not yet become established elsewhere. Variants that are resistant to both ciprofloxacin and ceftriaxone have been identified, and azithromycin resistance has also appeared in several different variants across South Asia. The Consortium's analyses provide valuable insights into the global distribution and transmission patterns of drug-resistant Typhi. Limited genetic data were available fromseveral regions, but data from travel-associated cases helped fill some regional gaps. These findings may help serve as a starting point for collective sharing and analyses of genetic data to inform local public health action. Funders need to provide ongoing supportto help fill global surveillance data gaps.


Asunto(s)
Salmonella typhi , Fiebre Tifoidea , Humanos , Salmonella typhi/genética , Fiebre Tifoidea/epidemiología , Antibacterianos/farmacología , Viaje , Farmacorresistencia Bacteriana/genética , Ciprofloxacina
3.
Nat Commun ; 14(1): 1983, 2023 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-37031199

RESUMEN

Shigella sonnei causes shigellosis, a severe gastrointestinal illness that is sexually transmissible among men who have sex with men (MSM). Multidrug resistance in S. sonnei is common including against World Health Organisation recommended treatment options, azithromycin, and ciprofloxacin. Recently, an MSM-associated outbreak of extended-spectrum ß-lactamase producing, extensively drug resistant S. sonnei was reported in the United Kingdom. Here, we aimed to identify the genetic basis, evolutionary history, and international dissemination of the outbreak strain. Our genomic epidemiological analyses of 3,304 isolates from the United Kingdom, Australia, Belgium, France, and the United States of America revealed an internationally connected outbreak with a most recent common ancestor in 2018 carrying a low-fitness cost resistance plasmid, previously observed in travel associated sublineages of S. flexneri. Our results highlight the persistent threat of horizontally transmitted antimicrobial resistance and the value of continuing to work towards early and open international sharing of genomic surveillance data.


Asunto(s)
Minorías Sexuales y de Género , Shigella , Masculino , Humanos , Shigella sonnei/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Homosexualidad Masculina , Viaje , Farmacorresistencia Bacteriana/genética , Pruebas de Sensibilidad Microbiana
5.
PLoS Negl Trop Dis ; 17(3): e0010450, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36857390

RESUMEN

Shigellosis is an increasing cause of gastroenteritis in Australia, with prolonged outbreaks reported in remote Aboriginal and Torres Strait Islander (hereafter "First Nations") communities and among men who have sex with men (MSM) in major cities. To determine associations between Shigella species and demographic and geographic factors, we used multivariate negative binomial regression to analyse national case notifications of shigellosis from 2001 to 2019. Between 2001 and 2019, Australian states and territories reported 18,363 shigellosis cases to the National Notifiable Diseases Surveillance System (NNDSS), of which age, sex and organism information were available for >99% (18,327/18,363) of cases. Of the cases included in our analysis, 42% (7,649/18,327) were S. sonnei, 29% (5,267/18,327) were S. flexneri, 1% (214/18,327) were S. boydii, less than 1% (87/18,327) were S. dysenteriae, and species information was unknown for 28% (5,110/18,327) of cases. Males accounted for 54% (9,843/18,327) of cases, and the highest proportion of cases were in children aged 0-4 years (19%; 3,562/18,327). Crude annual notification rates ranged from 2.2 cases per 100,000 in 2003 and 2011 to 12.4 cases per 100,000 in 2019. Nationally, notification rates increased from 2001 to 2019 with yearly notification rate ratios of 1.04 (95% CI 1.02-1.07) for S. boydii and 1.05 (95% CI 1.04-1.06) for S. sonnei. Children aged 0-4 years had the highest burden of infection for S. flexneri, S. sonnei and S. boydii; and males had a higher notification rate for S. sonnei (notification rate ratio 1.24, 95% CI 1.15-1.33). First Nations Australians were disproportionately affected by shigellosis, with the notification rate in this population peaking in 2018 at 92.1 cases per 100,000 population. Over the study period, we also observed a shift in the testing method used to diagnose shigellosis, with culture independent diagnostic testing (CIDT) increasing from 2014; this also coincided with an increase in notifications of untyped Shigella. This change in testing methodology may have contributed to the observed increase in shigellosis notifications since 2014, with CIDT being more sensitive than culture dependent testing methods. The findings of this study provide important insights into the epidemiological characteristics of shigellosis in Australia, including identification of high-risk groups. This can be used to inform public health prevention and control strategies, such as targeted communication programs in First Nations communities and places with high levels of interaction between young children, such as childcare centres. Our study findings also highlight the implications of culture independent testing on shigellosis surveillance, particularly a reduction in the availability of species level information. This emphasises the continued importance of culture dependant testing for national surveillance of shigellosis.


Asunto(s)
Disentería Bacilar , Minorías Sexuales y de Género , Shigella , Niño , Masculino , Humanos , Preescolar , Disentería Bacilar/epidemiología , Disentería Bacilar/diagnóstico , Homosexualidad Masculina , Australia/epidemiología
6.
Appl Environ Microbiol ; 88(23): e0136822, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36354326

RESUMEN

Members of the Campylobacter lari group are causative agents of human gastroenteritis and are frequently found in shellfish, marine waters, shorebirds, and marine mammals. Within a One Health context, we used comparative genomics to characterize isolates from a diverse range of sources and geographical locations within Europe and Australia and assess possible transmission of food, animal, and environmental isolates to the human host. A total of 158 C. lari isolates from Australia, Denmark, France, and Germany, which included 82 isolates from human stool and blood, 12 from food, 14 from domestic animal, 19 from waterbirds, and 31 from the environment were analyzed. Genome-wide analysis of the genetic diversity, virulence, and antimicrobial resistance (AMR) traits was carried-out. Most of the isolates belonged to C. lari subsp. lari (Cll; 98, 62.0%), while C. lari subsp. concheus and C. lari urease-positive thermotolerant Campylobacter (UPTC) were represented by 12 (7.6%) and 15 (9.5%) isolates, respectively. Furthermore, 33 (20.9%) isolates were not assigned a subspecies and were thus attributed to distant Campylobacter spp. clades. Whole-genome sequence-derived multilocus sequence typing (MLST) and core-genome MLST (cgMLST) analyses revealed a high genetic diversity with 97 sequence types (STs), including 60 novel STs and 14 cgMLST clusters (≤10 allele differences), respectively. The most prevalent STs were ST-21, ST-70, ST-24, and ST-58 (accounting for 13.3%, 4.4%, 3.8%, and 3.2% of isolates, respectively). A high prevalence of the 125 examined virulence-related loci (from 76.8 to 98.4% per isolate) was observed, especially in Cll isolates, suggesting a probable human pathogenicity of these strains. IMPORTANCE Currently, relatedness between bacterial isolates impacting human health is easily monitored by molecular typing methods. These approaches rely on discrete loci or whole-genome sequence (WGS) analyses. Campylobacter lari is an emergent human pathogen isolated from diverse ecological niches, including fecal material from humans and animals, aquatic environments, and seafood. The presence of C. lari in such diverse sources underlines the importance of adopting an integrated One Health approach in studying C. lari population structure for conducting epidemiological risk assessment. This retrospective study presents a comparative genomics analysis of C. lari isolates retrieved from two different continents (Europe and Australia) and from different sources (human, domestic animals, waterbirds, food, and environment). It was designed to improve knowledge regarding C. lari ecology and pathogenicity, important for developing effective surveillance and disease prevention strategies.


Asunto(s)
Infecciones por Campylobacter , Campylobacter lari , Leucemia Linfocítica Crónica de Células B , Salud Única , Animales , Humanos , Infecciones por Campylobacter/epidemiología , Infecciones por Campylobacter/veterinaria , Infecciones por Campylobacter/microbiología , Campylobacter lari/genética , Campylobacter lari/aislamiento & purificación , Genómica , Tipificación de Secuencias Multilocus , Estudios Retrospectivos
7.
mBio ; 13(5): e0192022, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36094088

RESUMEN

For decades, the remote island nation of Samoa (population ~200,000) has faced endemic typhoid fever despite improvements in water quality, sanitation, and economic development. We recently described the epidemiology of typhoid fever in Samoa from 2008 to 2019 by person, place, and time; however, the local Salmonella enterica serovar Typhi (S. Typhi) population structure, evolutionary origins, and genomic features remained unknown. Herein, we report whole genome sequence analyses of 306 S. Typhi isolates from Samoa collected between 1983 and 2020. Phylogenetics revealed a dominant population of rare genotypes 3.5.4 and 3.5.3, together comprising 292/306 (95.4%) of Samoan versus 2/4934 (0.04%) global S. Typhi isolates. Three distinct 3.5.4 genomic sublineages were identified, and their defining polymorphisms were determined. These dominant Samoan genotypes, which likely emerged in the 1970s, share ancestry with other 3.5 clade isolates from South America, Southeast Asia, and Oceania. Additionally, a 106-kb pHCM2 phenotypically cryptic plasmid, detected in a 1992 Samoan S. Typhi isolate, was identified in 106/306 (34.6%) of Samoan isolates; this is more than double the observed proportion of pHCM2-containing isolates in the global collection. In stark contrast with global S. Typhi trends, resistance-conferring polymorphisms were detected in only 15/306 (4.9%) of Samoan S. Typhi, indicating overwhelming susceptibility to antibiotics that are no longer effective in most of South and Southeast Asia. This country-level genomic framework can help local health authorities in their ongoing typhoid surveillance and control efforts, as well as fill a critical knowledge gap in S. Typhi genomic data from Oceania. IMPORTANCE In this study, we used whole genome sequencing and comparative genomics analyses to characterize the population structure, evolutionary origins, and genomic features of S. Typhi associated with decades of endemic typhoid fever in Samoa. Our analyses of Samoan isolates from 1983 to 2020 identified a rare S. Typhi population in Samoa that likely emerged around the early 1970s and evolved into sublineages that are presently dominant. The dominance of these endemic genotypes in Samoa is not readily explained by genomic content or widespread acquisition of antimicrobial resistance. These data establish the necessary framework for future genomic surveillance of S. Typhi in Samoa for public health benefit.


Asunto(s)
Salmonella typhi , Fiebre Tifoidea , Humanos , Fiebre Tifoidea/epidemiología , Antibacterianos/farmacología , Genotipo , Plásmidos , Pruebas de Sensibilidad Microbiana
8.
Lancet Microbe ; 3(6): e417-e426, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35659903

RESUMEN

BACKGROUND: The incidence of syphilis has increased markedly in the past decade in high-income countries, including Australia. To date, however, genomic studies of Treponema pallidum have focused mainly on the northern hemisphere. Here, we aimed to characterise the lineages of T pallidum driving the current syphilis epidemic in Australia. METHODS: In this genomic epidemiological analysis, using phylogenomic and phylodynamic analyses, we analysed 456 high-quality T pallidum genomes collected from clinical samples in Australia between Oct 19, 2005, and Dec 31, 2020, and contextualised this information with publicly available sequence data. We also performed detailed genomic characterisation of putative antimicrobial resistance determinants, in addition to correlating single-locus typing of the TP0548 allele with the T pallidum phylogeny. FINDINGS: Phylogenomic analyses identified four major sublineages circulating in Australia and globally, two belonging to the SS14 lineage, and two belonging to the Nichols lineage. Australian sublineages were further delineated into twelve subgroups, with five of the six largest subgroups associated with men who have sex with men, and the sixth lineage was predominantly associated with heterosexual people. Most Australian T pallidum genomes (398 [87%] of 456) were genotypically macrolide resistant, and TP0548 typing correlated significantly with T pallidum genomic subgroups. INTERPRETATION: These findings show that the current syphilis epidemic in Australia is driven by multiple lineages of T pallidum, rather than one distinct outbreak. Major subgroups of T pallidum in Australia have emerged within the past 30 years, are closely related to global lineages, and circulate across different sexual networks. In conjunction with improved testing and treatment, these data could better inform the control of syphilis in Australia. FUNDING: National Health and Medical Research Council, Australian Research Council.


Asunto(s)
Minorías Sexuales y de Género , Sífilis , Antibacterianos , Australia/epidemiología , Brotes de Enfermedades , Genómica , Homosexualidad Masculina , Humanos , Masculino , Sífilis/epidemiología , Treponema pallidum/genética
9.
PLoS Negl Trop Dis ; 16(3): e0010306, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35344544

RESUMEN

BACKGROUND: Typhoid fever, a systemic infection caused by Salmonella enterica serovar Typhi, remains a considerable public health threat in impoverished regions within many low- and middle-income settings. However, we still lack a detailed understanding of the emergence, population structure, molecular mechanisms of antimicrobial resistance (AMR), and transmission dynamics of S. Typhi across many settings, particularly throughout the Asia-Pacific islands. Here we present a comprehensive whole genome sequence (WGS) based overview of S. Typhi populations circulating in Papua New Guinea (PNG) over 30 years. PRINCIPLE FINDINGS: Bioinformatic analysis of 86 S. Typhi isolates collected between 1980-2010 demonstrated that the population structure of PNG is dominated by a single genotype (2.1.7) that appears to have emerged in the Indonesian archipelago in the mid-twentieth century with minimal evidence of inter-country transmission. Genotypic and phenotypic data demonstrated that the PNG S. Typhi population appears to be susceptible to former first line drugs for treating typhoid fever (chloramphenicol, ampicillin and co-trimoxazole), as well as fluoroquinolones, third generation cephalosporins, and macrolides. PNG genotype 2.1.7 was genetically conserved, with very few deletions, and no evidence of plasmid or prophage acquisition. Genetic variation among this population was attributed to either single point mutations, or homologous recombination adjacent to repetitive ribosomal RNA operons. SIGNIFICANCE: Antimicrobials remain an effective option for the treatment of typhoid fever in PNG, along with other intervention strategies including improvements to water, sanitation and hygiene (WaSH) related infrastructure and potentially the introduction of Vi-conjugate vaccines. However, continued genomic surveillance is warranted to monitor for the emergence of AMR within local populations, or the introduction of AMR associated genotypes of S. Typhi in this setting.


Asunto(s)
Salmonella typhi , Fiebre Tifoidea , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Genotipo , Humanos , Papúa Nueva Guinea/epidemiología , Análisis de Secuencia , Fiebre Tifoidea/tratamiento farmacológico , Fiebre Tifoidea/epidemiología
11.
Antimicrob Agents Chemother ; 65(12): e0120021, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34543095

RESUMEN

Typhoid fever is an invasive bacterial disease of humans that disproportionately affects low- and middle-income countries. Antimicrobial resistance (AMR) has been increasingly prevalent in recent decades in Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever, limiting treatment options. In Australia, most cases of typhoid fever are imported due to travel to regions where typhoid fever is endemic. Here, all 116 isolates of S. Typhi isolated in Victoria, Australia, between 1 July 2018 and 30 June 2020, underwent whole-genome sequencing and antimicrobial susceptibility testing. Genomic data were linked to international travel data collected from routine case interviews. Travel to South Asia accounted for most cases, with 92.2% imported from seven primary countries (the top two were India, n = 87, and Pakistan, n = 12). A total of 17 S. Typhi genotypes were detected in the 2-year cohort, with 48.2% genotyped as part of global AMR lineages. Ciprofloxacin resistance was detected in two lineages, 3.3 and 4.3.1.2, all from cases with reported travel to India. Nearly all multidrug and extensively drug resistant isolates (90%) were from cases with reported travel to Pakistan in genotypes 4.3.1.1 and 4.3.1.1.P1. Extended spectrum beta-lactamases, blaCTX-M-15 and blaSHV-12, were detected in cases with travel to Pakistan and India, respectively. Linking epidemiological data with genomic studies of S. Typhi provides an opportunity to improve understanding of the emergence, spread and risk of drug-resistant S. Typhi infections and to better inform empirical treatment guidelines in returned travelers.


Asunto(s)
Fiebre Tifoidea , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Genómica , Humanos , Salmonella typhi/genética , Fiebre Tifoidea/tratamiento farmacológico , Fiebre Tifoidea/epidemiología , Victoria
12.
Nat Commun ; 12(1): 4786, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34373455

RESUMEN

Salmonella enterica serovar 4,[5],12:i:- (Salmonella 4,[5],12:i:-) is a monophasic variant of Salmonella Typhimurium that has emerged as a global cause of multidrug resistant salmonellosis. We used Bayesian phylodynamics, genomic epidemiology, and phenotypic characterization to describe the emergence and evolution of Salmonella 4,[5],12:i:- in Australia. We show that the interruption of the genetic region surrounding the phase II flagellin, FljB, causing a monophasic phenotype, represents a stepwise evolutionary event through the accumulation of mobile resistance elements with minimal impairment to bacterial fitness. We identify three lineages with different population dynamics and discrete antimicrobial resistance profiles emerged, likely reflecting differential antimicrobial selection pressures. Two lineages are associated with travel to South-East Asia and the third lineage is endemic to Australia. Moreover antimicrobial-resistant Salmonella 4,[5],12:i- lineages efficiently infected and survived in host phagocytes and epithelial cells without eliciting significant cellular cytotoxicity, suggesting a suppression of host immune response that may facilitate the persistence of Salmonella 4,[5],12:i:-.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple/genética , Evolución Molecular , Salmonella enterica/clasificación , Salmonella enterica/genética , Serogrupo , Antibacterianos/farmacología , Australia , Teorema de Bayes , Línea Celular , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Flagelina/genética , Humanos , Inmunidad , Metales Pesados/farmacología , Filogenia , Salmonella enterica/efectos de los fármacos , Salmonella typhimurium , Células THP-1 , Secuenciación Completa del Genoma
13.
Nat Commun ; 12(1): 2684, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976138

RESUMEN

Shigella sonnei is the most common agent of shigellosis in high-income countries, and causes a significant disease burden in low- and middle-income countries. Antimicrobial resistance is increasingly common in all settings. Whole genome sequencing (WGS) is increasingly utilised for S. sonnei outbreak investigation and surveillance, but comparison of data between studies and labs is challenging. Here, we present a genomic framework and genotyping scheme for S. sonnei to efficiently identify genotype and resistance determinants from WGS data. The scheme is implemented in the software package Mykrobe and tested on thousands of genomes. Applying this approach to analyse >4,000 S. sonnei isolates sequenced in public health labs in three countries identified several common genotypes associated with increased rates of ciprofloxacin resistance and azithromycin resistance, confirming intercontinental spread of highly-resistant S. sonnei clones and demonstrating the genomic framework can facilitate monitoring the spread of resistant clones, including those that have recently emerged, at local and global scales.


Asunto(s)
Disentería Bacilar/diagnóstico , Genoma Bacteriano/genética , Genómica/métodos , Shigella sonnei/genética , Antibacterianos/farmacología , Australia , Azitromicina/farmacología , Ciprofloxacina/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Disentería Bacilar/microbiología , Inglaterra , Genética de Población , Genotipo , Geografía , Salud Global , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Filogenia , Polimorfismo de Nucleótido Simple , Shigella sonnei/clasificación , Shigella sonnei/fisiología , Estados Unidos , Secuenciación Completa del Genoma
14.
Zoonoses Public Health ; 68(6): 638-649, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34041858

RESUMEN

Campylobacter jejuni is the leading cause of bacterial gastroenteritis globally, and infections are often transmitted through consumption of raw or undercooked poultry. Campylobacter jejuni ST50 is among the top ten sequence types (STs) reported in the collected isolates listed at PubMLST records from poultry, food and clinical sources for Asia, Europe, North America, Oceania and South America. This study was designed to determine the most commonly reported C. jejuni STs globally using the PubMLST database and assess similarities between genomes of C. jejuni ST50 isolates from geographically distinct locations. To gain a better understanding of C. jejuni diversity, we compared draft genome sequences of 182 ST50 isolates recovered from retail or caecal poultry samples in Oceania, Europe and North America that were collected over a period of 9 years (2010 to 2018). Overall, phylogenetic analysis revealed that isolates from geographically distinct locations tended to cluster based on the continent where the sample was collected. Among ST50 isolates from Europe and North America, we identified resistance determinants associated with phenotypic resistance to beta-lactams (EU: 55%; GB: 43.1%), tetracyclines (CA: 77.3%; EU: 37.5%; GB: 9.8%; US: 43.5%) and fluoroquinolones (EU: 60.0%; GB: 15.7%); no resistance determinants were identified in isolates from Australia. In general, the majority of the virulence genes, with rare exceptions such as wlaN, cj1138, hddA and rfbC, were evenly distributed throughout the genomes of all ST50 isolates in this study. Genomic-based characterization of C. jejuni ST50 isolates from poultry on three continents highlighted that geographically distinct isolates have evolved independently but only represent a glimpse into the diversity of C. jejuni.


Asunto(s)
Infecciones por Campylobacter/veterinaria , Campylobacter jejuni/genética , Genómica/métodos , Enfermedades de las Aves de Corral/microbiología , Aves de Corral/microbiología , Animales , Antibacterianos/farmacología , Australia/epidemiología , Infecciones por Campylobacter/epidemiología , Infecciones por Campylobacter/microbiología , Campylobacter jejuni/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple , Europa (Continente)/epidemiología , Genoma Bacteriano , Funciones de Verosimilitud , América del Norte/epidemiología , Filogenia , Enfermedades de las Aves de Corral/epidemiología
15.
Front Microbiol ; 12: 651488, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815340

RESUMEN

Enterotoxigenic E. coli (ETEC) is a common cause of diarrhea in children in low- and middle-income countries, and in travelers to these countries. ETEC is also an important cause of morbidity and premature mortality in piglets, calves, goat kids and lambs. The major virulence determinants of ETEC are enterotoxins and colonization factors, which enable the pathogen to colonize the small intestine and deliver enterotoxins, such as the heat-stable enterotoxins, STp and STh, to epithelial cells. Because most ETEC strains are host-specific, there are few convenient animal models to investigate the pathogenesis of ETEC infections or to evaluate specific anti-ETEC interventions, such as drugs and vaccines. An exception is ETEC strains bearing F41 pili, which mediate intestinal colonization of various young animals, including neonatal mice, to cause disease and in some cases death. In this study, we used the archetypal F41-producing bovine ETEC strain, B41 (O101:NM; K99, F41, STp) to validate and further explore the contribution of F41 and STp to bacterial virulence. By using targeted gene deletion and trans-complementation studies, augmented by whole genome sequencing, and in vitro and animal studies of virulence, we established that F41 mediates colonization of the mouse intestine and is essential for bacterial virulence. In addition, we showed for the first time that STp is as important as F41 for virulence. Together, these findings validate the use of neonatal mice to study the pathogenesis of F41-bearing ETEC and to investigate possible specific anti-ETEC interventions including vaccines that target heat-stable enterotoxins.

16.
Trends Microbiol ; 29(9): 788-797, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33736902

RESUMEN

Phylodynamic methods have been essential to understand the interplay between the evolution and epidemiology of infectious diseases. To date, the field has centered on viruses. Bacterial pathogens are seldom analyzed under such phylodynamic frameworks, due to their complex genome evolution and, until recently, a paucity of whole-genome sequence data sets with rich associated metadata. We posit that the increasing availability of bacterial genomes and epidemiological data means that the field is now ripe to lay the foundations for applying phylodynamics to bacterial pathogens. The development of new methods that integrate more complex genomic and ecological data will help to inform public heath surveillance and control strategies for bacterial pathogens that represent serious threats to human health.


Asunto(s)
Bacterias/genética , Infecciones Bacterianas/microbiología , Genómica/métodos , Animales , Bacterias/clasificación , Bacterias/aislamiento & purificación , Infecciones Bacterianas/epidemiología , Evolución Molecular , Genoma Bacteriano , Genómica/tendencias , Humanos , Filogenia
17.
Lancet Microbe ; 2(11): e575-e583, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-35544081

RESUMEN

BACKGROUND: Pairwise single nucleotide polymorphisms (SNPs) are a cornerstone of genomic approaches to the inference of transmission of multidrug-resistant (MDR) organisms in hospitals. However, the impact of many key analytical approaches on these inferences has not yet been systematically assessed. This study aims to make such a systematic assessment. METHODS: We conducted a 15-month prospective study (2-month pilot phase, 13-month implementation phase), across four hospital networks including eight hospitals in Melbourne, VIC, Australia. Patient clinical and screening samples containing one or more isolates of meticillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium, and extended-spectrum ß-lactamase-producing Escherichia coli and Klebsiella pneumoniae were collected and underwent whole genome sequencing. Using the genome data from the top four most numerous sequence types from each species, 16 in total, we systematically assessed the: (1) impact of sample and reference genome diversity through multiple core genome alignments using different data subsets and reference genomes, (2) effect of masking of prophage and regions of recombination in the core genome alignments by assessing SNP distances before and after masking, (3) differences between a cumulative versus a 3-month sliding-window approach to sample genome inclusion in the dataset over time, and (4) the comparative effects each of these approaches had when applying a previously defined SNP threshold for inferring likely transmission. FINDINGS: 2275 samples were collected (397 during the pilot phase from April 4 to June 18, 2017; 1878 during the implementation phase from Oct 30, 2017, to Nov 30, 2018) from 1870 patients. Of these 2275 samples, 1537 were identified as arising from the four most numerous sequence types from each of the four target species of MDR organisms in this dataset (16 sequence types in total: S aureus ST5, ST22, ST45, and ST93; E faecium ST80, ST203, ST1421, and ST1424; K pneumoniae ST15, ST17, ST307, and ST323; and E coli ST38, ST131, ST648, and ST1193). Across the species, using a reference genome of the same sequence type provided a greater degree of pairwise SNP resolution, compared with species and outgroup-reference alignments that mostly resulted in inflated SNP distances and the possibility of missed transmission events. Omitting prophage regions had minimal effect; however, omitting recombination regions had a highly variable effect, often inflating the number of closely related pairs. Estimated SNP distances between isolate pairs over time were more consistent using a sliding-window than a cumulative approach. INTERPRETATION: We propose that the use of a closely related reference genome, without masking of prophage or recombination regions, and of a sliding-window approach for isolate inclusion is best for accurate and consistent MDR organism transmission inference, when using core genome alignments and SNP thresholds. These approaches provide increased stability and resolution, so SNP thresholds can be more reliably applied for putative transmission inference among diverse MDR organisms, reducing the chance of incorrectly inferring the presence or absence of close genetic relatedness and, therefore, transmission. The establishment of a broadly applicable and standardised approach, as proposed here, is necessary to implement widespread prospective genomic surveillance for MDR organism transmission. FUNDING: Melbourne Genomics Health Alliance, and National Health and Medical Research Council of Australia.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Enterococos Resistentes a la Vancomicina , Escherichia coli , Genómica , Bacterias Gramnegativas , Humanos , Klebsiella pneumoniae/genética , Staphylococcus aureus Resistente a Meticilina/genética , Estudios Prospectivos , Enterococos Resistentes a la Vancomicina/genética
18.
Antimicrob Agents Chemother ; 64(12)2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33020158

RESUMEN

In Australia, cases of shigellosis usually occur in returned travelers from regions of shigellosis endemicity or in men who have sex with men. Resistance to multiple antibiotics has significantly increased in Shigella sonnei isolates and represents a significant public health concern. We investigate an outbreak of multidrug-resistant S. sonnei in Victoria, Australia. We undertook whole-genome sequencing of 54 extended-spectrum-beta-lactamase (ESBL)-producing S. sonnei isolates received at the Microbiological Diagnostic Unit Public Health Laboratory between January 2019 and March 2020. The population structure and antimicrobial resistance profiles were identified by genomic analyses, with 73 previously characterized Australian S. sonnei isolates providing context. Epidemiological data, including age and sex of the shigellosis cases, were also collected. There was a significant increase in cases of ESBL S. sonnei from July 2019. Most of the ESBL S. sonnei isolates (65%) fell within a single cluster that was predominantly comprised of male cases that were characterized by the presence of the blaCTX-M-27 gene conferring resistance to extended-spectrum cephalosporins. These isolates were also multidrug resistant, including resistance to azithromycin and co-trimoxazole and reduced susceptibility to ciprofloxacin. Our data uncovered a prolonged clonal outbreak of ESBL S. sonnei infection that was likely first introduced by returned travelers and has subsequently been circulating locally in Australia. The emergence of a local outbreak of ESBL S. sonnei with a multidrug-resistant profile, including reduced susceptibility to ciprofloxacin, represents a significant public health threat.


Asunto(s)
Disentería Bacilar , Minorías Sexuales y de Género , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Brotes de Enfermedades , Disentería Bacilar/tratamiento farmacológico , Disentería Bacilar/epidemiología , Homosexualidad Masculina , Humanos , Masculino , Pruebas de Sensibilidad Microbiana , Shigella sonnei/genética , Victoria/epidemiología , beta-Lactamasas/genética
19.
BMC Genomics ; 21(1): 658, 2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32972363

RESUMEN

BACKGROUND: Horizontal gene transfer contributes to bacterial evolution through mobilising genes across various taxonomical boundaries. It is frequently mediated by mobile genetic elements (MGEs), which may capture, maintain, and rearrange mobile genes and co-mobilise them between bacteria, causing horizontal gene co-transfer (HGcoT). This physical linkage between mobile genes poses a great threat to public health as it facilitates dissemination and co-selection of clinically important genes amongst bacteria. Although rapid accumulation of bacterial whole-genome sequencing data since the 2000s enables study of HGcoT at the population level, results based on genetic co-occurrence counts and simple association tests are usually confounded by bacterial population structure when sampled bacteria belong to the same species, leading to spurious conclusions. RESULTS: We have developed a network approach to explore WGS data for evidence of intraspecies HGcoT and have implemented it in R package GeneMates ( github.com/wanyuac/GeneMates ). The package takes as input an allelic presence-absence matrix of interested genes and a matrix of core-genome single-nucleotide polymorphisms, performs association tests with linear mixed models controlled for population structure, produces a network of significantly associated alleles, and identifies clusters within the network as plausible co-transferred alleles. GeneMates users may choose to score consistency of allelic physical distances measured in genome assemblies using a novel approach we have developed and overlay scores to the network for further evidence of HGcoT. Validation studies of GeneMates on known acquired antimicrobial resistance genes in Escherichia coli and Salmonella Typhimurium show advantages of our network approach over simple association analysis: (1) distinguishing between allelic co-occurrence driven by HGcoT and that driven by clonal reproduction, (2) evaluating effects of population structure on allelic co-occurrence, and (3) direct links between allele clusters in the network and MGEs when physical distances are incorporated. CONCLUSION: GeneMates offers an effective approach to detection of intraspecies HGcoT using WGS data.


Asunto(s)
Transferencia de Gen Horizontal , Genes Bacterianos , Programas Informáticos , Escherichia coli/genética , Salmonella typhimurium/genética , Secuenciación Completa del Genoma/métodos
20.
Emerg Infect Dis ; 25(12): 2226-2234, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31742539

RESUMEN

In 2014, antimicrobial drug-resistant Campylobacter jejuni sequence type 6964 emerged contemporaneously in poultry from 3 supply companies in the North Island of New Zealand and as a major cause of campylobacteriosis in humans in New Zealand. This lineage, not previously identified in New Zealand, was resistant to tetracycline and fluoroquinolones. Genomic analysis revealed divergence into 2 major clades; both clades were associated with human infection, 1 with poultry companies A and B and the other with company C. Accessory genome evolution was associated with a plasmid, phage insertions, and natural transformation. We hypothesize that the tetO gene and a phage were inserted into the chromosome after conjugation, leaving a remnant plasmid that was lost from isolates from company C. The emergence and rapid spread of a resistant clone of C. jejuni in New Zealand, coupled with evolutionary change in the accessory genome, demonstrate the need for ongoing Campylobacter surveillance among poultry and humans.


Asunto(s)
Infecciones por Campylobacter/epidemiología , Infecciones por Campylobacter/microbiología , Campylobacter jejuni/efectos de los fármacos , Campylobacter jejuni/genética , Genoma Bacteriano , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/microbiología , Animales , Antibacterianos/farmacología , Infecciones por Campylobacter/historia , Campylobacter jejuni/clasificación , Campylobacter jejuni/aislamiento & purificación , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/microbiología , Farmacorresistencia Bacteriana , Fluoroquinolonas/farmacología , Genómica/métodos , Historia del Siglo XXI , Humanos , Tipificación de Secuencias Multilocus , Nueva Zelanda/epidemiología , Filogenia , Plásmidos , Polimorfismo de Nucleótido Simple , Enfermedades de las Aves de Corral/historia , Tetraciclina/farmacología , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...